Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress.

نویسندگان

  • Danchen Gao
  • Jian Yang
  • Yutao Wu
  • Qiwen Wang
  • Qiaoling Wang
  • En Yin Lai
  • Jianhua Zhu
چکیده

BACKGROUND/AIMS Inhibition of Drp-1-mediated mitochondrial fission limits reactive oxygen species (ROS) production and apoptosis in cardiomyocytes subjected to ischemia/reperfusion injury. It remains unknown if Dynamin 2 inhibition results in similar protective effects. Here we studied the role of Dynamin 2 in cardiomyocyte oxidative stress-induced apoptosis and ROS production. METHODS The effect of lentiviral shRNA (lv5-shRNA) mediated Dynamin 2 knockdown on apopotosis, mitochondria, and ROS production were studied in neonatal mouse cardiomycytes, which were further treated with either selective Drp1 inhibitor mdivi-1 or the Dynamin 2/Drp1 inhibitor Dynasore. Apoptosis was evaluated by flow cytometry. Mitochondrial morphology and transmembrane potential (ΔΨm) were studied by confocal microscopy, and ROS production was detected by dichlorofluorescein diacetate. RESULTS Inhibition of Drp1 and Dynamin 2 protected against mitochondrial fragmentation, maintained ΔΨm, attenuated cellular ROS production and limited apoptosis. Moreover, Lv5-shRNA mediated knockdown of Dynamin 2 alleviated mitochondrial fragmentation, and reduced both ROS production and oxidative stress-induced apoptosis. The protective effects of Dynamin 2 knockdown were enhanced by Dynasore, indicating an added benefit. CONCLUSIONS Oxidative stress-induced apoptosis and ROS production are attenuated by not only Drp1 inhibition but also Dynamin 2 inhibition, implicating Dynamin 2 as a mediator of oxidative stress in cardiomyocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas signaling molecule hydrogen sulfide attenuates doxorubicin-induced dilated cardiomyopathy

Increasing evidence has revealed that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, whether H2S can attenuate the development of dilated cardiomyopathy (DCM) remains unclear. In this study, we generated a rat model of DCM induced by doxorubicin and investigated the protective effects of H2S against DCM. Cardiac structure and function...

متن کامل

Nicotine promotes cardiomyocyte apoptosis via oxidative stress and altered apoptosis-related gene expression.

OBJECTIVE To investigate the effect of nicotine on cardiomyocyte apoptosis in vitro and explore the potential mechanisms involved. METHODS The MTT assay was used to detect the viability of cultured cardiomyocytes exposed to different concentrations of nicotine (0.1-100 microM). Laser confocal microscopy, TUNEL assay and flow cytometry were utilized to detect cardiomyocyte apoptosis. Oxidative...

متن کامل

lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy

We previously established a rat model of diabetic cardiomyopathy (DCM) and found that the expression of lncRNA H19 was significantly downregulated. The present study was designed to investigate the pathogenic role of H19 in the development of DCM. Overexpression of H19 in diabetic rats attenuated oxidative stress, inflammation and apoptosis, and consequently improved left ventricular function. ...

متن کامل

miR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway

miRNAs participate in the regulation of apoptosis. However, it remains largely unknown as to how miRNAs are integrated into the apoptotic program. Mitochondrial fission is involved in the initiation of apoptosis. It is not yet clear whether miRNAs are able to regulate mitochondrial fission. Here we report that miR-30 family members are able to regulate apoptosis by targeting the mitochondrial f...

متن کامل

Levocarnitine Protects H9c2 Rat Cardiomyocytes from H2O2-induced Mitochondrial Dysfunction and Apoptosis

BACKGROUND Although the protective effects of levocarnitine in patients with ischemic heart disease are related to the attenuation of oxidative stress injury, the exact mechanisms involved have yet to be fully understood. Our aim was to investigate the potential protective effects of levocarnitine pretreatment against oxidative stress in rat H9c2 cardiomyocytes. METHODS Cardiomyocytes were ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 39 6  شماره 

صفحات  -

تاریخ انتشار 2016